
8.3 A DISTRIBUTED ARCHITECTURE FOR THE
WSR-88D (NEXRAD) RADAR PRODUCT GENERATOR (RPG)

Allen Zahrai1, Zhongqi Jing1,2, and Neil Peery3

1NOAA/ERL/National Severe Storms Laboratory,
Norman, Oklahoma

2Cooperative Institute for Mesoscale Meteorological Studies,
University of Oklahoma, Norman, Oklahoma

3NOAA/NWS/WSR-88D Operational Support Facility,
Norman, Oklahoma

1. INTRODUCTION

NEXRAD is a network of Doppler weather surveillance
radars (WSR-88D) which is replacing an aging fleet of non-
Doppler meteorological radars operated by the National
Weather Service (NWS), the Air Weather Service (AWS) and
the Federal Aviation Administration’s (FAA). The WSR-88D
features significant improvements compared with earlier
meteorological radars both in technology and in meteorological
measurements. As a fully coherent Doppler radar, it provides
not only accurate reflectivity information, but also radial
velocity and velocity dispersion. Many other useful
meteorological products are also derived from base data and
distributed to users.

As the WSR-88D network reaches fully operational status,
users’ demands for enhancements and new features are
expected to continue and grow. However, architectural
characteristics of the existing system make functional
enhancements difficult to achieve. In fact, many of the
improvements proposed by the NEXRAD Technical Advisory
Committee (TAC) and user agencies are believed to be beyond
the capabilities of the existing system.

In response to increasing user demand for additional
capability and improved performance and to ensure long-term
viability of the WSR-88D system, a new architecture based on
distributed open system technology has been adopted. In
contrast with the original proprietary architecture, the new
system is based on commercial off-the-shelf (COTS) equipment
and open system standards. The purpose of this paper is to
briefly introduce the new architecture and describe it’s general
characteristics.

2. SYSTEM CHARACTERISTICS

The WSR-88D radar consists of three primary functional
areas; Radar Data Acquisition (RDA), Radar Product Generator
(RPG), and the Principal User Processors (PUPs). The RDA
subsystem provides real-time monitoring and control of the

antenna, the transmitter and the receiver. The RDA also
contains a digital signal processor (DSP) subsystem for
estimation of base data. The RPG ingests base data radials
from the RDA, produces meteorological products, and
distributes these products to the users. In addition to product
generation and distribution, the RPG also provides overall
system command and control through the Unit Control Position
(UCP). Users can access and display WSR-88D products using
a variety of equipment generally connected to the RPG by
dedicated and dial-up serial lines. Raw radial data received
from the RDA is also available to external users through
special dedicated high-speed interfaces.

Architectural limitations of the existing system result from
a design which is rigidly tied to a legacy computing platform.
In this design, a single computer often performs many
computationally dissimilar functions. For example, within the
RPG functional area, a single computer performs large number
of compute-intensive algorithms as well as extensive amount
of input/output (I/O) operations.

Long-term viability of the WSR-88D system mandates
transition to an open system architecture. Open system
standards are international standards for hardware and software
where products and modules from different vendors can
interoperate. These standards were established to make
modular replacement and incremental upgrades relatively
simple and cost effective.

Although this paper presents the new architecture for the
open system RPG (ORPG), system characteristics and concepts
presented here are readily applicable to other functional areas.

3. GENERAL REQUIREMENTS

Many architectural goals for the WSR-88D system can be
achieved by a suitable open system implementation. Other
desired characteristics can be provided by using distributed
processing concepts and client/server technology. These goals
and characteristics can be summarized as follows:

C The architecture must be modular and scalable. It must
readily accommodate modular replacement and
incremental upgrades. The system must be able to evolve
with new standards and technologies.

C Vendor independence. Avoid proprietary hardware and
software environments. Application software must be

 Corresponding author address: Allen Zahrai, National
Severe Storms Laboratory, 1313 Halley Circle, Norman, OK
73069-8480; e-mail <Allen.Zahrai@noaa.gov>

RDA
BASE DATA

USERS

PRODUCT
USERS

ORPG LAN

PROCESSING
ELEMENTS

USER LAN

COMMUNICATIONS
SERVER

Figure 1: A Distributed ORPG Architecture

RDA
BASE DATA

USERS

PRODUCT
USERS

ORPG LAN

PROCESSING
ELEMENTS

USER LAN

ACCESS
SERVER

BASE DATA
SERVER

Figure 2: Separate Communications Server Functions

designed to be portable at least at the source level.
C Protection against technological obsolescence. Application

software can migrate to different hardware platforms,
preserving the investment in software development.

C Interoperability between dissimilar functional modules.
Incremental upgrade and enhancement reduces the cost
and risk associated with planned product improvements.

C Reduction of complexity to develop new or improved
meteorological algorithms, allowing rapid deployment of
enhancements.

C The new architecture must provide improved local and
wide area connectivity for reliable and efficient delivery
of products and base data to an increasing number of
users.

C The architecture must accommodate fault tolerance and
dynamic response to overload conditions.

4. OPEN SYSTEM ARCHITECTURE

An open system is defined as a system which implements
widely adopted public specifications for interfaces, services,
and supporting formats to enable properly engineered
applications software to be ported across a wide range of
systems with minimal changes, to interoperate with other
applications on local and remote systems, and to interact with
users in a style which facilitates user portability. An open
system provides a set of protocols, interfaces, and services to
enable users and applications transparent access to data,
resources, and other services across a heterogeneous network.

Transition of the RPG to an open systems environment
involves development of a suitable architecture and use of
applicable standards. The RPG can be most effectively
implemented as a distributed client/server system. Since the
RPG is essentially an algorithm engine and a communications
processor, separation of these two functions provides the
primary foundation for the new distributed architecture. Figure
1 illustrates such a distributed architecture. In this environment
product servers implemented in the processing elements ingest
raw radial data from the RDA, execute algorithms and deliver
the results to their clients. The communications server consists
of dedicated communications processors which deliver base

data from the RDA to internal and external users, retrieve
products from product servers and distribute them to the users.

A Local Area Network (LAN) provides communications
medium between functional nodes. Processing elements consist
of general purpose workstations and nodes with specialized
functions, such as file servers, routers, display terminals, etc.

The communications server in Figure 1 must handle real-
time base data traffic between the RDA and any number of
internal and external clients. Internal clients are the processing
elements on the LAN and external clients are base data users’
equipment connected to the base data ports. The server also
must handle all network traffic including interactive product
distribution to product users connected through serial dedicated
and dialup lines. Using a single communications server for both
base data and product traffic not only requires high

performance equipment, but it presents a single point of failure
for the entire system. Figure 2 illustrates a refinement of the
previous architecture, where base data and product distribution
functions are separated and isolated. Narrowband
communications is handled by an access server. This
architecture provides improved modularity in each area as
communication demands change. For example, base data
distribution to external users may be handled by a server in the
RDA functional area.

Within the distributed ORPG; system resources and user
functions are distributed among computing nodes coupled
through a LAN. Within this environment; application programs
can be dynamically allocated to system nodes according to
predefined application classification.

The use of COTS equipment, standard operating system,
client/server, and networking technologies offer many
advantages beyond improved maintainability and support. A
distributed system allows dynamic load distribution and rapid
performance enhancements. A networked architecture provides
connectivity with other computer equipment as well as with
remote users through an internetworked infrastructure. Figures
1 and 2 show the ORPG connected to another LAN segment
(USER LAN) through a router or similar type of device.
Improved connectivity facilitates remote maintenance,
troubleshooting, and software updates. Encapsulation of
functionality into independent application modules with a well-

Archive
Products

Distribute
Products

Control
RDA

Acquire
Base Data

Generate
Products

Manage
ORPG

Monitor
System

Performance

Distribute
Base Data

Acquire
External

Data

ORPG
Application

Infrastucture

Manage
User

Interface

Figure 3: Typical ORPG Functions

defined application programming interface (API) reduces the
scope and side effects of software changes, and allows modular
development and code reuse.

5. SOFTWARE MODEL

The ultimate goal of any open system implementation
is application portability. To achieve this goal, application
programs must be encapsulated and isolated from the
underlying service layers. All interaction between the
application program and the system takes place through a set
of functions established and defined in the API. This functional
encapsulation will ease debugging and allow concurrent
development. If addition of new algorithms require increased
processing power, another processor can be added without
redesigning the entire system. Closely related algorithms such
as hydrometeorological algorithms can be grouped together and

assigned to a dedicated server.
In order to take advantage of the distributed architecture,

every functional element within the ORPG must be isolated
and encapsulated within an application module. An application
module is characterized by a well-defined functionality, and
interacts with the rest of the system through a standard API.
Application programs so designed, can be dynamically
allocated on any qualified node either by the operating system
or user command. Figure 3 illustrates a typical set of functions
for the ORPG.

An application module consists of one or more interrelated
processes. Processes within an application module use local
Inter Process Communication (IPC) facilities of the operating
system. An application, however, can only communicate with
another application or other system resources using a standard
set of procedures defined by the API specifications. Isolating
application programs from the underlying details allows
dynamic allocation and load distribution.

A layered programming model is essential in the design of
portable software. This model delineates the programming

environment into functional layers, where each layer is
characterized by the services it provides to the adjoining layers
through a set of standardized calls. The RPG can be described
as a data driven system; all processes in general, respond to
events consisting of either request for or availability of a data
item. Figure 4 shows a software model for a typical ORPG
node. In this figure, the network layer includes network access,
internet, and host-to-host layers of the TCP/IP protocol. The
middleware between the network and application layers
represents the ORPG application infrastructure layers. The
interface between the application programs and the operating
system is completely defined in the API specifications and is
highlighted in this figure. It is important to note that other
system services not directly related to ORPG functions are also
represented by application modules.

The ORPG Application Programming Library (APL)
implements API functions for application modules. Application
programs utilize a set of standard calls to access system
services. Library functions interpret and transform these calls
for lower layers. For example, when an application module
needs a particular data item, it simply requests the item by
some logical name. The application does not know or care
where the data are located nor how it will be retrieved.
Functions in the library locate the data and retrieve it with the
aid of lower level services. User applications are completely
isolated from the underlying implementation details.

Dynamic binding is essential in a distributed environment
in order to facilitate dynamic resource allocation. That is,
applications must not refer to data items and files by their
physical attributes, because either the application or the data or
both may be relocated to another location by the system in
response to some condition. Within the ORPG, all data which
are not local to an application, are globally defined by well-
known logical descriptors. The system maintains mapping
tables to translate logical names to physical locations.

Data distribution in the ORPG environment is derived
from information modeling concepts, where global data are
maintained and distributed through well-known data storage
areas. This method decouples application modules from each
other such that one module’s response or failure does not affect
the other. Actual nature and characteristics of the data stores
are defined by the system designers, and hidden from the
application programs.

Events generally refer to asynchronous phenomena
requiring immediate system intervention. Events occur either
from exceptional conditions such as component failures or user
interaction. Events are well-known global entities and
processes register for sourcing or receipt of specific events.
Event queues and signaling are managed by a system level
process on each ORPG node.

Data distribution, event notification, and other distributed
system services are represented in Figure 4 as the distributed
application services layer. Functions in this layer build upon
and extend standard UNIX (POSIX) system calls to provide a
robust and efficient distributed processing environment.

Operating System

Application Programming Library

Network Services

Physical Network

Application
Program

API

API

Application
Program

Distributed Application Services

Figure 4: Software Model for a Typical ORPG Node.

It is important to note that functionality provided by the
Distributed Application Services layer is not specific to the
ORPG.

6. STANDARDS

The success of any open system implementation depends
to a large degree upon adoption and adherence to applicable
public standards. Such standards directly contribute to an
application development framework established to ensure
software portability and code reuse. A comprehensive Open
System Environment (OSE) standards profile is currently being
developed for the ORPG through a technical consensus process
in consonance with other modernization efforts in the NWS. A
brief summary of applicable standards will be presented here
for completeness.

IEEE Standard 1003.1-1988 was the first of a group of
proposed standards collectively known as the Portable
Operating System Interface for Computer Environments
(POSIX). In 1990 POSIX was adopted by the ISO and
designated ISO/IEC 9945-1:1990. POSIX is a rich set of
standards covering a wide range of operating system services.
A conforming POSIX application can move from system to
system with a very high confidence of low maintenance and
correct operation. Therefore, POSIX conformance is a primary
requirement for all ORPG application programs. Although
POSIX does not specify or require a specific operating system,
it is based on the UNIX operating system. Therefore, many
UNIX platforms offer POSIX conformance.

The primary programming language is C (FIPS 160 C,
ANSI/ISO 9899:1992). C is a general purpose high-level
language designed for use in all levels of software. Fortran
(FIPS 69-1, ISO 1539:1980, ANSI X3.9-1978) is a high-level
language used primarily in scientific applications. Use of
Fortran shall be restricted to; existing algorithms, and under
special circumstances to new algorithms.

The Open Systems Interconnection (OSI) protocols define
connectivity standards for both local (LAN) and wide (WAN)
area networking. The existing RPG uses an OSI protocol
known as X.25 for communicating with the RDA and the
external users. Open system RPG shall provide X.25 support
for existing users and TCP/IP protocol support for network
connectivity. Remote connections to the RPG in the future may
use either X.25 or TCP/IP protocols as requirements dictate.

The user interacts with the ORPG through the master
system control function (MSCF) interface. In the distributed
environment these functions may be accessed from different
nodes depending on local configuration. Therefore, a device
independent graphic user interface (GUI) is required for the
ORPG environment. X Window System originally developed
at MIT to fulfill a need for a distributed, hardware independent
user interface, has long been adopted by a consortium of
hardware and software vendors and the government as standard
base for user interfaces. X provides a client/server
infrastructure for user interface. X does not define any
particular user interface style; i.e. “look and feel”. Open
Software Foundation (OSF) has developed a standard user
interface toolkit for X known as Motif. The standard user
interface for ORPG shall be based on X Window System and
Motif style.

Computer Aided Software Engineering (CASE) tools shall
be used in forward and reverse engineering processes to
produce design documentation and facilitate maintenance.

7. ACKNOWLEDGMENT

The WSR-88D is jointly maintained and operated by the
National Weather Service (NWS), a component of the National
Oceanic and Atmospheric Administration (NOAA), in the
Department of Commerce (DOC), the Air Force’s Air Weather
Service (AWS), in the Department of Defense (DOD), and the
Federal Aviation Administration (FAA) in the Department of
Transportation (DOT). The primary support organization
established by the three agencies is the WSR-88D Operational
Support Facility (OSF). The authors also wish to acknowledge
the NWS Office of Systems Development (OSD) which
provides project management and support for the WSR-88D
evolution. The National Severe Storms Laboratory (NSSL) of
the Environmental Research Laboratories (ERL), a component
of NOAA in the DOC along with the OSF and the OSD are
jointly responsible for the development and testing of many
enhancements for the WSR-88D. The NSSL along with other
ERL laboratories provide technical leadership and guidance in
further understanding and utilization of the WSR-88D system.

8. REFERENCES

Saffle R.E., L.D. Johnson: NEXRAD Product Improvement
Overview, Preprints 13th IIPS, Longbeach, CA., Amer.
Meteor. Soc., paper 8.1

Institute of Electrical and Electronic Engineers,
IEEE Std 1003.0-1995, Guide to the POSIX Open
 System Environment, IEEE Standards Board, Piscataway,
New Jersey

International Standards Organization/International
Electrotechnical Commision (ISO/IEC), 1989, Information
Processing Systems - Open Systems Interconnection -

Basic
Reference Model, ISO/IEC 7498-4, Geneva, Switzerland

NOAA, NEXRAD Technical Requirements, R400-SP401A,

Joint Systems Program Office, Silver Spring, MD

NOAA, Tri-Agency Requirements for Operational Use of
Weather Radar Data, Draft Document May 31, 1996,
NWS Office of Systems Development, Silver Spring, MD

NOAA, Federal Meteorological Handbook, No. 11, Federal
Coordinator for Meteorological Services and Supporting
Research, National Oceanic and Atmospheric
Administration, US Department of Commerce, Rockville,
MD, 1989

